AC Impressor 350 AXICHEM Pty Ltd Chemwatch: 26-0742 Version No: 4.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: **10/12/2021**Print Date: **18/02/2022**L.GHS.AUS.EN #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | AC Impressor 350 | |-------------------------------|---| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains imidacloprid) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses A soil applied treatment for the control of greyback and Childers canegrub in sugarcane and silverleaf whitefly in various vegetable crops. #### Details of the supplier of the safety data sheet | Registered company name | AXICHEM Pty Ltd | |-------------------------|---| | Address | 9 Palings Court Nerang QLD 4211 Australia | | Telephone | 07 5596 1736 | | Fax | Not Available | | Website | www.axichem.com.au | | Email | msds@axichem.com.au | #### **Emergency telephone number** | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|------------------------------| | Emergency telephone numbers | +61 1800 951 288 | | Other emergency telephone numbers | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture | Poisons Schedule | S6 | |--------------------|---| | Classification [1] | Acute Toxicity (Oral) Category 4, Serious Eye Damage/Eye Irritation Category 2B, Hazardous to the Aquatic Environment Long-Term Hazard Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -
Annex VI | #### Label elements Hazard pictogram(s) Issue Date: **10/12/2021**Print Date: **18/02/2022** | Cianal | word | Warning | |--------|------|----------| | Signal | word | vvarning | #### Hazard statement(s) | H302 | Harmful if swallowed. | |------|---| | H320 | Causes eye irritation. | | H410 | Very toxic to aquatic life with long lasting effects. | #### Precautionary statement(s) Prevention | P264 | Wash all exposed external body areas thoroughly after handling. | |------|---| | P270 | Do not eat, drink or smoke when using this product. | | P273 | Avoid release to the environment. | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P391 | Collect spillage. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | P330 | Rinse mouth. | #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---|-----------|---------------------------------| | 138261-41-3 | 30-60 | <u>imidacloprid</u> | | Not Available | | (350g/L) | | 56-81-5 | 10-30 | glycerol | | Not Available | 0-10 | other non hazardous ingredients | | 7732-18-5 | 30-60 | water | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | #### **SECTION 4 First aid measures** #### Description of first aid measures | Description of first aid me | easures | |-----------------------------|--| | Eye Contact | If this product comes in contact with the eyes: Number Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. | Chemwatch: 26-0742 Page 3 of 13 Issue Date: 10/12/2021 Version No: 4.1 AC Impressor 350 Print Date: 18/02/2022 | | Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | |-----------|---| | Ingestion | For advice, contact a Poisons Information Centre or a doctor. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. for neonicotinoid intoxications: - ▶ No specific antidotes are known. - It is important to support respiration if signs of paralysis appear and to monitor blood pressure and pulse rate, since bradycardia and hypotonia are possible. - Since the compounds do NOT inhibit cholinesterase activity, treatment with a reactivating oxime is not indicated. - Symptoms of poisoning may be mediated by either stimulation or inhibition of nicotinic activity, or by other possible mechanisms. Therefore treatment with a nicotinic antagonist might be either ineffective or contraindicated. Handbook of Neurotoxicology; Vol 1; Ed Edward J. Massaro, Humana Press, 2001 This compound does not inhibit cholinesterase but toxic symptoms may resemble cholinergic stimulation. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** - ▶ Water spray or fog. - ▶ Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | None known | | |-------------------------|---|--| | Advice for firefighters | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting
procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | Fire/Explosion Hazard | The material is not readily combustible under normal conditions. However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. Heat may cause expansion or decomposition with violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Combustion products include: carbon dioxide (CO2) acrolein hydrogen chloride phosgene nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. | | | HAZCHEM | •3Z | | #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures Issue Date: 10/12/2021 Print Date: 18/02/2022 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|--| | Major Spills | Environmental hazard - contain spillage. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Limit all unnecessary personal contact. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | |---------------|---| | | Store in original containers.Keep containers securely sealed. | ### Other information - ▶ Store in a cool, dry, well-ventilated area. - ▶ Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities | | ▶ Lined metal can, lined metal pail/ can. | |-------------------------|--| | | ▶ Plastic pail. | | Suitable container | ▶ Polyliner drum. | | | ▶ Packing as recommended by manufacturer. | | | ► Check all containers are clearly labelled and free from leaks. | | Storage incompatibility | Avoid contamination of water, foodstuffs, feed or seed. | #### **SECTION 8 Exposure controls / personal protection** ### **Control parameters** Occupational Exposure Limits (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material | TWA | STEL | Peak | Notes | |--------|------------|----------|-----|------|------|-------| | | | | | | | | Issue Date: 10/12/2021 Print Date: 18/02/2022 | | | name | | | | | |---------------------------------|----------|------------------|-------------|------------------|------------------|--| | Australia Exposure
Standards | glycerol | Glycerin
mist | 10
mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |------------|----------|-----------|-------------| | glycerol | 45 mg/m3 | 180 mg/m3 | 1,100 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--------------|---------------|---------------| | imidacloprid | Not Available | Not Available | | glycerol | Not Available | Not Available | | water | Not Available | Not Available | #### **Occupational Exposure Banding** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |--------------|--|----------------------------------|--| | imidacloprid | Е | ≤ 0.01 mg/m³ | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | #### MATERIAL DATA None assigned. Refer to individual constituents. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. ### Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed
conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Issue Date: **10/12/2021**Print Date: **18/02/2022** #### Personal protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below #### Hands/feet protection Eye and face protection ▶ Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber #### Body protection #### See Other protection below #### Other protection - Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - ▶ Eye wash unit. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: #### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: AC Impressor 350 | Material | СРІ | |------------------|-----| | BUTYL | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE | С | | PVA | С | | VITON | С | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | A-AUS / Class
1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face $\label{eq:A(All classes)} A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)$ - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties Appearance Beige liquid; mixes with water. Issue Date: 10/12/2021 Print Date: 18/02/2022 | Physical state | Liquid | Relative density (Water = 1) | 1.16 | |--|----------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (Not
Available%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** #### Information on toxicological effects | Inhaled | Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. | |-----------
--| | Ingestion | Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The insecticidal activity of neonicotinoids (nitromethylene, chlorothiazoles, chlorpyridines, spinosads) is attributed to binding of the molecule to nicotinic acetylcholine receptors (nAChR) located in the insect central nervous system (CNS). This group of insecticides have much lower activity in vertebrate tissues due to differences in binding to nAChR subtypes. Poor penetration of the blood-brain barrier is an additional factor that acts to reduce the toxicity of neonicotinoids in vertebrates. Nevertheless at relatively high levels of exposure, these insecticides are neuroactive and produce neurotoxic effects. The principal effect may involve stimulation or inhibition. Tremors have occurred in mice treated with representative compounds. These compounds produce a variety of neurotoxic signs following acute exposure, with complete recovery within several hours or a few days following treatment. The most consistent finding at lower doses is evidence of decreased activity. At higher doses, tremors, impaired pupillary function (either dilated or pin-point pupils) and hypothermia are the most common effects. Finally, at near lethal doses, neurotoxic effects are assorted and include motor incoordination, (uncoordinated gait or impaired aerial righting), autonomic signs (lachrymation, urine staining) and CNS depression (marked decreased motor activity and decreased response to stimuli). Deaths associated with treatment occurred within 4-24 hours. There was no evidence of neuropathology associated with these compounds. | ## Page 8 of 13 AC Impressor 350 Issue Date: **10/12/2021**Print Date: **18/02/2022** Certain findings (e.g tremors, impaired pupillary function and hypothermia) that are evident at sublethal doses are likely associated with nicotinic stimulation or represent nonspecific toxic effects. Sustained dietary exposure to relatively low doses produces little or no evidence of neurotoxicity. These results suggest that cumulative toxicity is not a concern with neonicotinoid insecticides. This outcome is consistent with their rapid metabolism and excretion in rats. #### The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either - produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. #### Eve Skin Contact Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects. Chronic Imidazole is structurally related to histamine and has been used as an antagonist to counteract the effects of excess histamine found in certain induced physiological conditions (it therefore acts as an antihistamine). Imidazoles have been reported to disrupt male fertility through disruption of testicular function. Certain imidazole fungicides provoke histamine release by a non-immunological mechanism, induce airway constriction in guinea-pigs and hence may be harmful to spray operators who might inhale fungicide aerosols used for plant protection. Imidazole fungicides inhibit the cytochrome P450 (CYP) complex, including the 14alpha-demethylase (CYP51) enzyme required for ergosterol biosynthesis, in fungal cell membranes. In addition, intracellular accumulation of toxic methylated sterols occurs and the synthesis of triglycerides and phospholipids is altered. Disturbances in oxidative and peroxidative enzyme activities lead to an intracellular toxic concentration of hydrogen peroxide. As a result, intracellular organelle destruction then leads to cell page 150. 2-Methylimidazole decreased luteinising hormone secretion and tissue interstitial fluid testosterone concentration two hours after injection into Sprague Dawley rats. Imidazoles bind to cytochrome P450 haeme, resulting in inhibition of catalysis. However, 2-substituted imidazoles are considered to be poor inhibitors. Imidazole is probably an inducer of cytochrome P4502E1. In general, inducers of this isozyme stabilise the enzyme by preventing phosporylation of a serine which leads to haeme loss. Several drugs containing an imidazole moiety were retained and bound in connective tissue when administered to laboratory animals. The bound material was primarily recovered from elastin (70%) and the collagen. It is postulated that reaction with aldehydes gives an aldol condensation pro Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. | | TOXICITY | IRRITATION | |------------------|---|---------------------------------| | AC Impressor 350 | Not Available | Not Available | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >5000 mg/kg ^[2] | Eye (rabbit): non-irritating * | | imidacloprid | Inhalation(Rat) LC50; >0.069 mg/L4h ^[2] | Skin (rabbit): non-irritating * | | | Oral (Mouse) LD50; 150 mg/kg ^[2] | | | | | | | | TOXICITY | IRRITATION | | glycerol | TOXICITY dermal (guinea pig) LD50: 58500 mg/kg ^[1] | IRRITATION Not Available | | glycerol | | | | | dermal (guinea pig) LD50: 58500 mg/kg ^[1] | | | glycerol | dermal (guinea pig) LD50: 58500 mg/kg ^[1] Oral (Mouse) LD50; 4090 mg/kg ^[2] | Not Available | Issue Date: **10/12/2021**Print Date: **18/02/2022** Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### IMIDACLOPRID [* The Pesticides Manual, Incorporating The Agrochemicals Handbook, 10th Edition, Editor Clive Tomlin, 1994, British Crop Protection Council] ADI 0.057 mg/kg bw. * Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as
reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. #### For glycerol: GLYCEROL Acute toxicity: Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of 4000 mg/kg bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser. Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is 10,000 mg/kg bw/day (20% in diet). At this dose level no systemic or local effects were observed. For inhalation exposure to aerosols, the NOAEC for local irritant effects to the upper respiratory tract is 165 mg/m3 and 662 mg/m3 for systemic effects. **Genotoxicity:** Glycerol is free from structural alerts, which raise concern for mutagenicity. Glycerol does not induce gene mutations in bacterial strains, chromosomal effects in mammalian cells or primary DNA damage *in vitro*. Results of a limited gene mutation test in mammalian cells were of uncertain biological relevance. *In vivo*, glycerol produced no statistically significant effect in a chromosome aberrations and dominant lethal study. However, the limited details provided and the absence of a positive control, prevent any reliable conclusions to be drawn from the *in vivo* data. Overall, glycerol is not considered to possess genotoxic potential. Carcinogenicity: The experimental data from a limited 2 year dietary study in the rat does not provide any basis for concerns in relation to carcinogenicity. Data from non-guideline studies designed to investigate tumour promotion activity in male mice suggest that oral administration of glycerol up to 20 weeks had a weak promotion effect on the incidence of tumour formation. Reproductive and developmental toxicity: No effects on fertility and reproductive performance were observed in a two generation study with glycerol administered by gavage (NOAEL 2000 mg/kg bw/day). No maternal toxicity or teratogenic effects were seen in the rat, mouse or rabbit at the highest dose levels tested in a guideline comparable teratogenicity study (NOEL 1180 mg/kg bw/day). #### WATER No significant acute toxicological data identified in literature search. | Acute Toxicity | ~ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X - Data either not available or does not fill the criteria for classification ✓ – Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------|------------------|--------------------|-------------------------------|------------------|--------------------| | AC Impressor 350 | Not
Available | Not Available | Not Available | Not
Available | Not
e Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 144h | Crustacea | <0.001mg/l | 4 | | imidacloprid | LC50 | 96h | Fish | 6.68mg/l | 4 | | | EC50 | 72h | Algae or other aquatic plants | >10mg/l | 2 | Issue Date: 10/12/2021 Print Date: 18/02/2022 | | EC50 | 48h | Crustacea | 12.76-21.82mg/l | 4 | |----------|------------------|--------------------|---------------|------------------|------------------| | | Endpoint | Test Duration (hr) | Species | Value | Source | | glycerol | EC0(ECx) | 24h | Crustacea | >500mg/l | 1 | | | LC50 | 96h | Fish | 885mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | water | Nist | | | | | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |--------------|-------------------------|------------------| | imidacloprid | HIGH | HIGH | | glycerol | LOW | LOW | | water | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |--------------|-----------------------| | imidacloprid | LOW (LogKOW = 1.4496) | | glycerol | LOW (LogKOW = -1.76) | #### Mobility in soil | Ingredient | Mobility | |--------------|------------------| | imidacloprid | LOW (KOC = 5048) | | glycerol | HIGH (KOC = 1) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ - Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 Transport information** #### **Labels Required** Marine Pollutant HAZCHEM •3Z #### Land transport (ADG) UN number 3082 Issue Date: **10/12/2021**Print Date: **18/02/2022** | UN proper shipping name | ENVIRONMENTA | ALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains imidacloprid) | |----------------------------|-------------------|--| | | Class 9 | | | Transport hazard class(es) | Subrisk Not | Applicable | | Packing group | III | | | Environmental hazard | Environmentally l | nazardous | | Special precautions for | Special provision | ons 274 331 335 375 AU01 | | user | Limited quantity | 7 5 L | Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in; - (a) packagings; - (b) IBCs; or - (c) any other receptacle not exceeding 500 kg(L). - Australian Special Provisions (SP AU01) ADG Code 7th Ed. #### Air transport (ICAO-IATA / DGR) | UN number | 3082 | | | | |------------------------------|---|---|--------------------|--| | UN proper shipping name | Environmentally hazardous substance, liquid, n.o.s. * (contains imidacloprid) | | | | | | ICAO/IATA Class | 9 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 9L | | | | Packing group | III | | | | | Environmental hazard | Environmentally hazard | Environmentally hazardous | | | | | Special provisions | | A97 A158 A197 A215 | | | | Cargo Only Packing Instructions | | 964 | | | | Cargo Only Maximum Qty / Pack | | 450 L | | | Special precautions for user | Passenger and Cargo | Packing Instructions | 964 | | | usei | Passenger and Cargo Maximum Qty / Pack | | 450 L | | | | Passenger and Cargo | Passenger and Cargo Limited Quantity Packing Instructions | | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 30 kg G | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 3082 | | | |------------------------------|---|---------------------------------|--| | UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains imidacloprid) | | | | Transport hazard class(es) | IMDG Class 9 IMDG Subrisk N | lot Applicable | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-A , S-F
274 335 969
5 L | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | imidacloprid | Not Available | | glycerol | Not Available | | water | Not Available | Issue Date: **10/12/2021**Print Date: **18/02/2022** #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------|---------------| | imidacloprid | Not Available | | glycerol | Not Available | | water | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture imidacloprid is found on the following regulatory lists Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 glycerol is found on the following regulatory lists
Australian Inventory of Industrial Chemicals (AIIC) water is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### **National Inventory Status** | National Inventory | Status | | |--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | No (imidacloprid) | | | Canada - DSL | No (imidacloprid) | | | Canada - NDSL | No (imidacloprid; glycerol; water) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | No (imidacloprid) | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | No (imidacloprid) | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 10/12/2021 | |---------------|------------| | Initial Date | 01/11/2009 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 3.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 4.1 | 10/12/2021 | Classification change due to full database hazard calculation/update. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. Page **13** of **13** AC Impressor 350 Issue Date: **10/12/2021**Print Date: **18/02/2022** The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances **ELINCS: European List of Notified Chemical Substances** NLP: No-Longer Polymers **ENCS: Existing and New Chemical Substances Inventory** KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.